TABLE OF CONTENTS

Warnings...1
Firmware Version ...2
Environmental Conditions ...2
Electrical Specifications ..2
Applicable Sensor Operating Ranges2
Section A: Programming the Controller3
 A – 1: The Program Menu ..3
 A – 1.1: Entering the Program Menu3
 A – 1.2: Selecting Language3
 A – 1.3: pH High Alarm Point3
 A – 1.4: pH Low Alarm Point3
 A – 1.5: ORP High Alarm Point3
 A – 1.6: ORP Low Alarm Point3
 A – 1.7: Temperature High Alarm Point3
 A – 1.8: Temperature Low Alarm Point3
 A – 1.10: Exiting the Menu3
Section B: Normal Operation ..5
 B – 1: Displaying the Set points5
 B – 2: Modifying the Set Points5
 B – 2.1: Modifying the pH Set Point5
 B – 2.2: Modifying the ORP Set Point5
 B – 2.3: Modifying the ppm Set Point5
 B – 2.4: Modifying the Booster Trigger Point5
 B – 2.5: Modifying the Booster End Point5
 B – 3: Single Point Calibration5
 B – 3.1: Single Point Calibration - pH5
 B – 3.2: Single Point Calibration - Temp5
 B – 3.3: Single Point Calibration - ppm6
 B – 3.4: Probe Error ..6
 B – 4: Alarms ..6
 B – 4.1: pH High/Low alarms6
 B – 4.2: ORP High/Low alarms6
 B – 4.3: Temperature High/Low alarms6
 B – 4.4: No Flow alarm6
 B – 4.5: (x) min Feed Delay6
 B – 4.6: Cl/Br Lockout6
 B – 4.7: pH FAILSAFE ALM6
 B – 4.8: Cl/Br FAILSAFE6
 B – 4.9: Booster FAILSAFE6
 B – 5: Resetting a Failsafe Alarm6
Section C: Maintenance ..7
 C – 1: Potentiometric Sensors (pH and ORP)7
 C – 1.1: Electrode Cleaning:7
 C – 1.2: Long-Term Storage:7
Section D: Feed Charts ..8
 D – 1: Spa Feed Charts ...8
 D – 2: Pool Feed Charts9
Section E: Installation Diagrams10
 E – 1: Pressure Filter Installation10
 E – 2: Vacuum Filter Installation10
Section F: Warranty ..11
Pay particular attention to the following warnings encountered while utilizing your BECSys3 Water Chemistry Controller:

WARNING

RISK OF ELECTRIC SHOCK
Disconnect power before servicing

WARNING

pH

ONLY CONNECT A pH FEEDER TO THIS OUTLET

Connecting a Chlorine/Bromine feeder to this outlet can cause chemical interactions that may cause personal injury or death.

WARNING

CHLORINE/BROMINE

ONLY CONNECT A CHLORINE BROMINE FEEDER TO THIS OUTLET

Connecting a pH feeder to this outlet can cause chemical interactions that may cause personal injury or death.

⚠️ **Warning:** Various other warning boxes may be found throughout the manual text.

⚠️ **Caution:** Various other caution boxes may be found throughout the manual text.
General Guidelines

Proper installation and use of the BECSys controller depends on the specific needs of the application. Read the manual completely before starting the installation and ensure all guidelines and recommendations are followed. All components should be mounted and the flow cell plumbing installed and pressure tested before wiring the controller. Ensure compliance with all applicable plumbing and electrical codes during the installation as well.

⚠️ Caution: The BECSys controller should not be installed where it is accessible to the public.

Firmware Version

This manual was written for firmware v1.20. If you received newer firmware but did not receive a copy of the manual covering that version of firmware, please contact your distributor.

Environmental Conditions

The BECSys3 is housed in a NEMA 4X (IP65) enclosure. It should not be used in explosive environments. The BECSys3 should be mounted so that adequate ventilation is provided around the enclosure, preventing general environmental specifications from being exceeded (see table below).

Environmental Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>-30 to 60 Deg C</td>
</tr>
<tr>
<td>Ambient Operating Temperature</td>
<td>-18 to 40 Deg C</td>
</tr>
<tr>
<td>Ambient Humidity</td>
<td>95% non condensing maximum humidity</td>
</tr>
</tbody>
</table>

Electrical Specifications

The BECSys3 may be ordered in either a 115VAC model or a 230VAC model. Following are the electrical specifications for each model:

Controller Ratings

<table>
<thead>
<tr>
<th></th>
<th>115VAC Model</th>
<th>230VAC Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>115VAC 60Hz</td>
<td>230VAC 50Hz</td>
</tr>
<tr>
<td>Phase</td>
<td>Single</td>
<td>Single</td>
</tr>
<tr>
<td>Current (¼ Amp – Controller)</td>
<td>9.25 Amps Full Load</td>
<td>9.125 Amps Full Load</td>
</tr>
<tr>
<td>Current (9 Amps – Relay Outputs, 3A X 3)</td>
<td>9 Amps – Relay Outputs, 3A X 3</td>
<td>9 Amps – Relay Outputs, 3A X 3</td>
</tr>
</tbody>
</table>

Relay Output Ratings

<table>
<thead>
<tr>
<th></th>
<th>115VAC Model</th>
<th>230VAC Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1 (K1)</td>
<td>250VAC (max) – 3 Amps</td>
<td>250VAC (max) – 3 Amps</td>
</tr>
<tr>
<td>Relay 2 (K2)</td>
<td>250VAC (max) – 3 Amps</td>
<td>250VAC (max) – 3 Amps</td>
</tr>
<tr>
<td>Relay 3 (K3)</td>
<td>250VAC (max) – 3 Amps</td>
<td>250VAC (max) – 3 Amps</td>
</tr>
</tbody>
</table>

Applicable Sensor Operating Ranges

<table>
<thead>
<tr>
<th>Standard Sensors</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>0.0 to 14.0 pH</td>
</tr>
<tr>
<td>ORP</td>
<td>-1500mV to 1500mV</td>
</tr>
<tr>
<td>Reed Flow Switch</td>
<td>Switch Point (On): 2.0 gpm</td>
</tr>
<tr>
<td>Rotary Flow Switch</td>
<td>Switch Point (On): 1.5 gpm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Sensors</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>32°F to 212°F (0°C to 100°C)</td>
</tr>
</tbody>
</table>
Section A: Programming the Controller

A – 1: The Program Menu

A – 1.1: Entering the Program Menu

To enter the program menu, press and hold both the Cal and Up key for three seconds. At the end of three seconds, one of two things will happen.

If the access codes have been set, the unit will prompt you for your access code. Use the up and down arrow to change the current digit, and press the Cal button to go to the next digit. Once all three digits are set, the controller will either display the first menu item or display "Access Denied" if the code you entered didn't match one of the access codes.

When the LCD screen clears, release the keys and “Program” should appear on the display. Press the Up key to enter the menu and press the Down key to exit.

Once in the program menu, use the Up or down arrows to scroll to the setting you wish to change. Press the Cal key to select the setting, then use the Up or down arrows to modify the value. Press the Cal key again to enter the new value and return to the menu. To exit the program menu, scroll to the “Exit menu” option and depress the Cal key.

NOTE: After two minutes of no programming activity, the Time-Out feature will automatically exit the programming menu.

A – 1.2: Selecting Language

The BECSys3 can be programmed to display in three different languages. Once you have entered the program menu the screen will display Language ENG, signifying that the display is currently set to English. Pressing the Cal key will display a question mark (?) before the language. Use the up and down buttons to select between ENG (English), ESP (Spanish), and FRA (French), and press the Cal key to select the language you would like to use for the display.

A – 1.3: pH High Alarm Point

Pressing the down arrow displays pH High followed by the current pH high alarm point. To change this setting, press the Cal key, use the up or down arrows to input the value you would like, then press the Cal key again to save the new value.

A – 1.4: pH Low Alarm Point

Pressing the down arrow displays pH Low followed by the current pH low alarm point. To change this setting, press the Cal key, use the up or down arrows to input the value you would like, then press the Cal key again to save the new value.

A – 1.5: ORP High Alarm Point

Pressing the down arrow displays ORP High followed by the current ORP high alarm point. To change this setting, press the Cal key, use the up or down arrows to input the value you would like, then press the Cal key again to save the new value.

A – 1.6: ORP Low Alarm Point

Pressing the down arrow displays ORP Low followed by the current ORP low alarm point. To change this setting, press the Cal key, use the up or down arrows to input the value you would like, then press the Cal key again to save the new value.

A – 1.7: Temperature High Alarm Point

Pressing the down arrow displays Temp High followed by the current temperature high alarm point. To change this setting, press the Cal key, use the up or down arrows to input the value you would like, then press the Cal key again to save the new value.
A – 1.8: Temperature Low Alarm Point

Pressing the down arrow displays Temp Low followed by the current temperature low alarm point. To change this setting, press the Cal key, use the up or down arrows to input the value you would like, then press the Cal key again to save the new value.

A – 1.9: ORP/ppm

Pressing the down arrow displays ORP/ppm selection. This option selects whether to use an ORP set point or a ppm set point for the main Cl/Br feed control. It is set to ORP by default. To change this setting, press the Cal key, use the up and down arrows to change between ORP and ppm, then press the Cal key again to save the new value. This option is only available if configured to allow ppm control.

A – 1.10: Exiting the Menu

Pressing the down arrow displays Exit menu. Pressing the Cal key exits the programming menu.
Section B: Normal Operation

B – 1: Displaying the Set points
To display the Set Points, press the Set point key briefly. The set points will be displayed for three seconds.

B – 2: Modifying the Set Points
To modify the set points press the Set point key for three seconds. If the access codes have been set, the unit will prompt you for your access code, otherwise the display will change to pH SetPt followed by the current pH Set point. For help entering your access code, see A - 1.1: Entering the Program Menu.

B – 2.1: Modifying the pH Set Point
To change this setting, use the Up or Down Arrows to input the new value, then press the Set point key again to save it. To skip entering a new value, press the Set Point key.

B – 2.2: Modifying the ORP Set Point
If the system is configured to control using an ORP set point, the screen will display ORP SetPt followed by the current ORP Set point. To change this setting, use the Up or Down Arrows to input the new value, then press the Set point key again to save it. To skip entering a new value, press the Set Point key.

B – 2.3: Modifying the ppm Set Point
If the system is configured to control using a ppm set point, the screen will display ppm SetPt and the current ppm set point on the LED bar graph will be flashing. To change this setting, use the Up or Down Arrows to adjust this value shown on the LED bar graph and press the Set point key again to save the new value. To skip entering a new value, press the Set Point key.

B – 2.4: Modifying the Booster Trigger Point
If Relay 3 is configured for Cl/Br Booster control, the screen will display booster trig followed by the current trigger point. To change this setting, use the Up or Down Arrows to input the new value, then press the Set point key again to save it. To skip entering a new value, press the Set Point key.

B – 2.5: Modifying the Booster End Point
If Relay 3 is configured for Cl/Br Booster control, the screen will display booster end followed by the current end set point. To change this setting, use the Up or Down Arrows to input the new value, then press the Set point key again to save it. To skip entering a new value, press the Set Point key.

B – 3: Single Point Calibration
To enter the calibration menu, press and hold the Cal key for three seconds. If the access codes have been set, the unit will prompt you for your access code, otherwise the display clears followed by Cal pH and the current pH reading. For help entering your access code, see A - 1.1: Entering the Program Menu.

B – 3.1: Single Point Calibration - pH
The display should now read Cal pH followed by the current pH reading. Use the arrow keys to adjust the displayed value to match your test kit reading, and then press the Cal key to save it. To skip entering a new value, press the Cal key.

B – 3.2: Single Point Calibration - Temp
The display should now show Cal Temp followed by the current Temp calibration value. Once again, use the arrow keys to adjust this value to the real value then press the Cal key to enter it. To skip entering a new value, press the Cal key.
B – 3.3: Single Point Calibration - ppm

If ppm is available on your unit, the display should read Cal ppm and the ppm LED's will be flashing. Use the arrow keys to adjust the LED bar graph to match your test kit reading, and then press the Cal key to save it. To skip entering a new value, press the Cal key.

B – 3.4: Probe Error

If during a single point calibration you receive the error message “Probe Error!” contact your distributor.

B – 4: Alarms

During normal operation, the following alarms may be displayed. Some alarms will not be available depending on the system's configuration.

B – 4.1: pH High/Low alarms

This is displayed when the pH input has risen above/fallen below the pH high/low alarm point. These alarms will also trigger the Cl/Br Lockout alarm.

B – 4.2: ORP High/Low alarms

This is displayed when the ORP input has risen above/fallen below the ORP high/low alarm point.

B – 4.3: Temperature High/Low alarms

This is displayed when the Temperature input has risen above/fallen below the Temperature high/low alarm point.

B – 4.4: No Flow alarm

This is displayed when the flow input indicates the flow has stopped. This alarm disables all chemical feeds.

B – 4.5: (x) min Feed Delay

When flow is disrupted and then restored, the controller will delay restarting feeds for a programmed duration in order to prevent operating feeds based on readings from stagnant water. \((x)\) = the number of minutes remaining before feeds are allowed to start (e.g. 5 min Feed Delay).

B – 4.6: Cl/Br Lockout

This is triggered whenever there is a pH high or low alarm. This message indicates that the Cl/Br feed (relay 2) and the optional Cl/Br Booster (relay 3) are disabled in order to prevent the Cl/Br feeds from driving the pH even further out of range.

B – 4.7: pH FAILSAFE ALM

This is displayed when the active pH feed (feed up or feed down) attempted to feed continuously for the selected failsafe duration. The active pH feed is disabled until one of the following conditions occurs:
1) The pH input reaches the programmed set point.
2) Disruption of flow
3) User manually resets the failsafe.

B – 4.8: Cl/Br FAILSAFE

This is displayed when the Cl/Br feed attempted to feed continuously for the selected failsafe duration. The Cl/Br feed is disabled until one of the following conditions occurs:
1) The ORP/ppm input reaches the programmed set point.
2) Disruption of flow
3) User manually resets the failsafe.

B – 4.9: Booster FAILSAFE

This is displayed when the optional Cl/Br Booster feed attempted to feed continuously for the selected failsafe duration. The Cl/Br Booster feed is disabled until one of the following conditions occurs:
1) The ORP input reaches the Cl/Br Booster set point.
2) Disruption of flow
3) User manually resets the failsafe.

B – 5: Resetting a Failsafe Alarm

To reset a failsafe alarm, press and hold the Up and down arrow keys momentarily.
The BECSys3 requires no maintenance other than a periodic calibration check and sensor cleaning.

C – 1: Potentiometric Sensors (pH and ORP)

C – 1.1: Electrode Cleaning:

Slow response time and large offsets may indicate the electrode has become coated. The nature of the coating will dictate the type of cleaning technique that should be used.

- Soft coatings, like bacterial films, are best removed using a squirt bottle or the water jet from a faucet. If this is not successful, then gently wipe with a soft wet cloth.
- For a more severe coating, first try a strong detergent (something similar to Dawn liquid detergent) and warm water, using a soft brush (like a toothbrush). Isopropyl alcohol on a Q-tip is another good choice. Rinse the measuring end in distilled water before reinstallation.
- Greasy and oily coatings are best removed with a detergent solution or a solvent that will not attack the sensor body. Methanol and isopropyl alcohol are good choices for solvents. Acetone, MEK, THF, or trichloroethane will irreparably harm the electrode.
- Hard coatings, like calcium or lime scale, are best removed with a solvent appropriate for the particular coating. A 5% solution of hydrochloric acid (HCl) would be a good choice for calcium scale. If unsure of the proper solvent to remove a hard mineral coating, then alternate between a 5% hydrochloric acid and a 4% sodium hydroxide (NaOH) for 10 minutes each. After treating the electrode with these strong acids or bases, rinse the electrode with water and soak it in a pH 4 buffer for at least 1/2 hour.
- The platinum tip of an ORP sensor can be cleaned with an abrasive as a last resort. Gently scour the platinum with a 600 grit wet emery cloth, or preferably, a 1-3 micron alumina polishing powder.

Warning: You may lightly blot the water on a pH sensor tip on a paper towel, but never vigorously rub or wipe the pH bulb because this may scratch the delicate outer layer on the pH glass impairing its response.

- Hard coatings, like calcium or lime scale, are best removed with a solvent appropriate for the particular coating. A 5% solution of hydrochloric acid (HCl) would be a good choice for calcium scale. If unsure of the proper solvent to remove a hard mineral coating, then alternate between a 5% hydrochloric acid and a 4% sodium hydroxide (NaOH) for 10 minutes each. After treating the electrode with these strong acids or bases, rinse the electrode with water and soak it in a pH 4 buffer for at least 1/2 hour.
- The platinum tip of an ORP sensor can be cleaned with an abrasive as a last resort. Gently scour the platinum with a 600 grit wet emery cloth, or preferably, a 1-3 micron alumina polishing powder.

C – 1.2: Long-Term Storage:

Save the wetting cap that came with the sensor for long-term storage. After removing the sensor from the flow-cell, clean it as in routine maintenance, and then store it in the wetting cap using a pH 4 buffer saturated with potassium chloride (KCl). The potassium chloride will prevent electrolyte from leaching out of the sensors reference cell. The wetting cap only needs to be half full. If a number of sites are going to be serviced, for example, at the end of a season, then it might be a good idea to carry a pint of 4.0/KCl storage solution.
Use the charts on the following pages to determine the correct amount of chemical to add to spa or pool water to achieve desired conditions. Choose which chart to use by the chemical indicated and the number of gallons to be treated.

Section D: Feed Charts

D – 1: Spa Feed Charts

Quantity of Muriatic Acid Needed to Lower Total Alkalinity

<table>
<thead>
<tr>
<th>Desired Decrease In ppm</th>
<th>Gallons in Spa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>1.25 ts</td>
</tr>
<tr>
<td>20</td>
<td>2.50 ts</td>
</tr>
<tr>
<td>30</td>
<td>1.25 tb</td>
</tr>
<tr>
<td>40</td>
<td>5.00 ts</td>
</tr>
<tr>
<td>50</td>
<td>2.00 tb</td>
</tr>
<tr>
<td>60</td>
<td>2.50 tb</td>
</tr>
<tr>
<td>70</td>
<td>3.00 tb</td>
</tr>
<tr>
<td>80</td>
<td>3.50 tb</td>
</tr>
<tr>
<td>90</td>
<td>0.25 cp</td>
</tr>
<tr>
<td>100</td>
<td>0.25 cp</td>
</tr>
</tbody>
</table>

Note: ts = teaspoon, tb = tablespoon, cp = one cup (8 fl oz)

Quantity of Sodium Bisulfate Needed to Lower Total Alkalinity

<table>
<thead>
<tr>
<th>Desired Decrease In ppm</th>
<th>Gallons in Spa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>1.50 ts</td>
</tr>
<tr>
<td>20</td>
<td>1.00 tb</td>
</tr>
<tr>
<td>30</td>
<td>1.50 tb</td>
</tr>
<tr>
<td>40</td>
<td>2.00 tb</td>
</tr>
<tr>
<td>50</td>
<td>2.50 tb</td>
</tr>
<tr>
<td>60</td>
<td>3.00 tb</td>
</tr>
<tr>
<td>70</td>
<td>0.25 cp</td>
</tr>
<tr>
<td>80</td>
<td>0.25 cp</td>
</tr>
<tr>
<td>90</td>
<td>0.33 cp</td>
</tr>
<tr>
<td>100</td>
<td>0.33 cp</td>
</tr>
</tbody>
</table>

Note: ts = teaspoon, tb = tablespoon, cp = one cup (8 fl oz)

Quantity of Bicarbonate of Soda Needed to Raise Total Alkalinity

<table>
<thead>
<tr>
<th>Desired Increase In ppm</th>
<th>Gallons in Spa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>1.25 ts</td>
</tr>
<tr>
<td>20</td>
<td>1.00 tb</td>
</tr>
<tr>
<td>30</td>
<td>1.50 tb</td>
</tr>
<tr>
<td>40</td>
<td>2.00 tb</td>
</tr>
<tr>
<td>50</td>
<td>2.50 tb</td>
</tr>
<tr>
<td>60</td>
<td>3.00 tb</td>
</tr>
<tr>
<td>70</td>
<td>3.50 tb</td>
</tr>
<tr>
<td>80</td>
<td>0.25 cp</td>
</tr>
<tr>
<td>90</td>
<td>0.33 cp</td>
</tr>
</tbody>
</table>

Note: ts = teaspoon, tb = tablespoon, cp = one cup (8 fl oz)

Quantity of Calcium Chloride Needed to Increase Calcium Hardness

<table>
<thead>
<tr>
<th>Desired Increase In ppm</th>
<th>Gallons in Spa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>1.25 ts</td>
</tr>
<tr>
<td>20</td>
<td>2.50 ts</td>
</tr>
<tr>
<td>30</td>
<td>1.25 tb</td>
</tr>
<tr>
<td>40</td>
<td>4.00 ts</td>
</tr>
<tr>
<td>50</td>
<td>2.00 tb</td>
</tr>
<tr>
<td>60</td>
<td>2.50 tb</td>
</tr>
<tr>
<td>70</td>
<td>3.00 tp</td>
</tr>
<tr>
<td>80</td>
<td>3.50 tp</td>
</tr>
<tr>
<td>90</td>
<td>0.25 cp</td>
</tr>
<tr>
<td>100</td>
<td>0.25 cp</td>
</tr>
</tbody>
</table>

Note: ts = teaspoon, tb = tablespoon, cp = one cup (8 fl oz)

Quantity of Chlorine Compound Needed to Increase 1 ppm

<table>
<thead>
<tr>
<th>Percent Chlorine In Product</th>
<th>Gallons in Spa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>0.50 tb</td>
</tr>
<tr>
<td>10</td>
<td>0.25 tb</td>
</tr>
<tr>
<td>12</td>
<td>0.25 tb</td>
</tr>
<tr>
<td>30</td>
<td>0.25 tb</td>
</tr>
<tr>
<td>40</td>
<td>0.167 ts</td>
</tr>
<tr>
<td>50</td>
<td>0.167 ts</td>
</tr>
<tr>
<td>60</td>
<td>0.167 ts</td>
</tr>
<tr>
<td>65</td>
<td>0.100 ts</td>
</tr>
</tbody>
</table>

Note: ts = teaspoon, tb = tablespoon, cp = one cup (8 fl oz)
Quantity of Muriatic Acid Needed to Lower Total Alkalinity

<table>
<thead>
<tr>
<th>Desired Increase In ppm</th>
<th>Gallons in Pool</th>
<th>10,000</th>
<th>25,000</th>
<th>50,000</th>
<th>75,000</th>
<th>100,000</th>
<th>200,000</th>
<th>500,000</th>
<th>750,000</th>
<th>1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>lb</td>
<td>1.50</td>
<td>3.75</td>
<td>7.50</td>
<td>11.25</td>
<td>15.00</td>
<td>30.00</td>
<td>75.00</td>
<td>112.50</td>
<td>150.00</td>
</tr>
<tr>
<td>20</td>
<td>lb</td>
<td>3.00</td>
<td>7.50</td>
<td>15.00</td>
<td>22.50</td>
<td>30.00</td>
<td>60.00</td>
<td>150.00</td>
<td>225.00</td>
<td>300.00</td>
</tr>
<tr>
<td>30</td>
<td>lb</td>
<td>4.50</td>
<td>11.25</td>
<td>22.50</td>
<td>37.50</td>
<td>45.00</td>
<td>90.00</td>
<td>225.00</td>
<td>337.50</td>
<td>450.00</td>
</tr>
<tr>
<td>40</td>
<td>lb</td>
<td>6.00</td>
<td>15.00</td>
<td>30.00</td>
<td>45.00</td>
<td>60.00</td>
<td>120.00</td>
<td>300.00</td>
<td>450.00</td>
<td>600.00</td>
</tr>
<tr>
<td>50</td>
<td>lb</td>
<td>7.50</td>
<td>18.75</td>
<td>35.70</td>
<td>52.50</td>
<td>75.00</td>
<td>150.00</td>
<td>375.00</td>
<td>562.50</td>
<td>750.00</td>
</tr>
<tr>
<td>60</td>
<td>lb</td>
<td>9.00</td>
<td>22.50</td>
<td>45.00</td>
<td>67.50</td>
<td>90.00</td>
<td>180.00</td>
<td>450.00</td>
<td>675.00</td>
<td>900.00</td>
</tr>
<tr>
<td>70</td>
<td>lb</td>
<td>10.50</td>
<td>26.25</td>
<td>52.50</td>
<td>78.75</td>
<td>105.00</td>
<td>210.00</td>
<td>525.00</td>
<td>787.50</td>
<td>1050.00</td>
</tr>
<tr>
<td>80</td>
<td>lb</td>
<td>12.00</td>
<td>30.00</td>
<td>60.00</td>
<td>90.00</td>
<td>120.00</td>
<td>240.00</td>
<td>600.00</td>
<td>900.00</td>
<td>1200.00</td>
</tr>
<tr>
<td>90</td>
<td>lb</td>
<td>13.50</td>
<td>33.75</td>
<td>67.50</td>
<td>101.25</td>
<td>135.00</td>
<td>270.00</td>
<td>675.00</td>
<td>1012.50</td>
<td>1350.00</td>
</tr>
<tr>
<td>100</td>
<td>lb</td>
<td>15.00</td>
<td>37.50</td>
<td>75.00</td>
<td>112.50</td>
<td>150.00</td>
<td>300.00</td>
<td>750.00</td>
<td>1125.00</td>
<td>1500.00</td>
</tr>
</tbody>
</table>

Note: 1 lb = pounds of dry chemical

Quantity of Calcium Chloride Needed to Increase Calcium Hardness

<table>
<thead>
<tr>
<th>Desired Increase In ppm</th>
<th>Gallons in Pool</th>
<th>10,000</th>
<th>25,000</th>
<th>50,000</th>
<th>75,000</th>
<th>100,000</th>
<th>200,000</th>
<th>500,000</th>
<th>750,000</th>
<th>1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>lb oz</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>18</td>
<td>25</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>lb oz</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>18</td>
<td>25</td>
<td>35</td>
<td>50</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>lb oz</td>
<td>3</td>
<td>12</td>
<td>18</td>
<td>25</td>
<td>35</td>
<td>50</td>
<td>70</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>40</td>
<td>lb oz</td>
<td>4</td>
<td>15</td>
<td>20</td>
<td>31</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>50</td>
<td>lb oz</td>
<td>5</td>
<td>18</td>
<td>22</td>
<td>37</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>60</td>
<td>lb oz</td>
<td>6</td>
<td>21</td>
<td>24</td>
<td>40</td>
<td>60</td>
<td>90</td>
<td>120</td>
<td>180</td>
<td>240</td>
</tr>
<tr>
<td>70</td>
<td>lb oz</td>
<td>7</td>
<td>24</td>
<td>28</td>
<td>45</td>
<td>70</td>
<td>105</td>
<td>150</td>
<td>225</td>
<td>300</td>
</tr>
<tr>
<td>80</td>
<td>lb oz</td>
<td>8</td>
<td>27</td>
<td>30</td>
<td>50</td>
<td>75</td>
<td>110</td>
<td>160</td>
<td>240</td>
<td>320</td>
</tr>
<tr>
<td>90</td>
<td>lb oz</td>
<td>9</td>
<td>30</td>
<td>33</td>
<td>50</td>
<td>75</td>
<td>112.5</td>
<td>165</td>
<td>250</td>
<td>337.5</td>
</tr>
<tr>
<td>100</td>
<td>lb oz</td>
<td>10</td>
<td>33</td>
<td>37</td>
<td>55</td>
<td>80</td>
<td>120</td>
<td>180</td>
<td>270</td>
<td>360</td>
</tr>
</tbody>
</table>

Note: 1 lb = pounds of dry chemical

Quantity of Bicarbonate of Soda Needed to Raise Total Alkalinity

<table>
<thead>
<tr>
<th>Desired Increase In ppm</th>
<th>Gallons in Pool</th>
<th>10,000</th>
<th>25,000</th>
<th>50,000</th>
<th>75,000</th>
<th>100,000</th>
<th>200,000</th>
<th>500,000</th>
<th>750,000</th>
<th>1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>lb oz</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>18</td>
<td>25</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>lb oz</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>18</td>
<td>25</td>
<td>35</td>
<td>50</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>lb oz</td>
<td>3</td>
<td>12</td>
<td>18</td>
<td>25</td>
<td>35</td>
<td>50</td>
<td>70</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>40</td>
<td>lb oz</td>
<td>4</td>
<td>15</td>
<td>20</td>
<td>31</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>50</td>
<td>lb oz</td>
<td>5</td>
<td>18</td>
<td>22</td>
<td>37</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>60</td>
<td>lb oz</td>
<td>6</td>
<td>21</td>
<td>24</td>
<td>40</td>
<td>60</td>
<td>90</td>
<td>120</td>
<td>180</td>
<td>240</td>
</tr>
<tr>
<td>70</td>
<td>lb oz</td>
<td>7</td>
<td>24</td>
<td>28</td>
<td>45</td>
<td>70</td>
<td>105</td>
<td>150</td>
<td>225</td>
<td>300</td>
</tr>
<tr>
<td>80</td>
<td>lb oz</td>
<td>8</td>
<td>27</td>
<td>30</td>
<td>50</td>
<td>75</td>
<td>110</td>
<td>160</td>
<td>240</td>
<td>320</td>
</tr>
<tr>
<td>90</td>
<td>lb oz</td>
<td>9</td>
<td>30</td>
<td>33</td>
<td>50</td>
<td>75</td>
<td>112.5</td>
<td>165</td>
<td>250</td>
<td>337.5</td>
</tr>
<tr>
<td>100</td>
<td>lb oz</td>
<td>10</td>
<td>33</td>
<td>37</td>
<td>55</td>
<td>80</td>
<td>120</td>
<td>180</td>
<td>270</td>
<td>360</td>
</tr>
</tbody>
</table>

Note: 1 lb = pounds of dry chemical
Section E: Installation Diagrams

E – 1: Pressure Filter Installation

E – 2: Vacuum Filter Installation
Section F: Replacement Parts

Fuses
- 8140086 115V Unit Main Fuse: Time Lag 250mA 250V
- 8140093 230V Unit Main Fuse: Time Lag 125mA 250V
- 9140088 Relays 1-3: Time Lag 3A 250V
- 8140059 RS485 Fuse: Time Lag 250mA 250V
- 3200053 Fuse Cap

Fuses
- 8140008 115V Unit Main Fuse: Time Lag 250mA 250V
- 8140009 230V Unit Main Fuse: Time Lag 125mA 250V
- 9140008 Relays 1-3: Time Lag 3A 250V
- 8140005 RS485 Fuse: Time Lag 250mA 250V
- 3200003 Fuse Cap

Sensors
- **pH Sensors**
 - 9650010 BECSys pH Sensor (10' cable) [range: 0 to 14.0 pH]
- **ORP Sensors**
 - 9650022 BECSys ORP Sensor Platinum Band (30' cable) [range: 0 to 1000mV]
 - 9650023 BECSys ORP Sensor Platinum Band (10' cable) [range: 0 to 1000mV]
 - 9650038 BECSys ORP Sensor Solid Gold Band (30' cable) [range: 0 to 1000mV]
 - 9650040 BECSys ORP Sensor Solid Gold Band (10' cable) [range: 0 to 1000mV]

pH/ORP Sensor Accessories
- 8500061 4/KCl solution (pint): for long-term storage of sensors
- 8680015 ½" Wetting Cap for pH and ORP sensors

Temperature Sensors
- 9650016 Temperature Sensor (30' cable) [range: -32°F to 212°F (0°C to 100°C)]
- 9650003 Temperature Sensor (10' cable) [range: -32°F to 212°F (0°C to 100°C)]

Flow Switches
- 9650006 Reed flow switch [Switch Point (On): 2.0 gpm]
- 9650007 Rotary flow switch [Switch Point (On): 1.5 gpm]
- 9060547 Spring Check Valve
- 9500019 Rotary Flow Switch Replacement Kit includes: 1 Pin, 1 Cover, 1 Wheel, 1 O-ring
- 8060663 Rotary Flow Switch Replacement Pin
- 8060664 Rotary Flow Switch Replacement Cover
- 8060665 Rotary Flow Switch Replacement Wheel
- 8060666 Rotary Flow Switch Replacement O-Ring

Boards
- 1200406 BECSys3 CPU PCB
- 1200407 BECSys3 Relay PCB

Software
- 1230082 BECSys3 Program IC
- 9500014 PLCC Extraction Tool

Documentation
- 8620006 BECSys3 Operator’s Manual
- 8620012 BECSys3 Installation/Technical Manual
- 8620032 BECSys3 (0.2-3.0 scale) Quick Reference Sheet
- 8620033 BECSys3 (0.6-6.0 scale) Quick Reference Sheet
- 8620034 BECSys3 (No ppm scale) Quick Reference Sheet

Enclosure Parts
- M000066 BECSys3 Lid Assembly (No PCB) no ppm scale
- M000067 BECSys3 Lid Assembly (No PCB) 0.2-3.0 ppm scale
- M000068 BECSys3 Lid Assembly (No PCB) 0.6-6.0 ppm scale
- 9440140 BECSys3 Overlay, no ppm scale
- 9440139 BECSys3 Overlay, 0.2-3.0 ppm scale
- 9440138 BECSys3 Overlay, 0.6-6.0 ppm scale

Internal Components
- 8041102 2 Position Pluggable Terminal Block (Temperature)
- 8041103 3 Position Pluggable Terminal Block (Flow Switch, RS485)
- 8380650 RS485 IC
- 9060533 Shield Screws
- 9520034 Ribbon Cable

Flow Cell Replacement Parts
- **Round Flow Cell**
 - 1220210 Round Flow Cell Body
 - 1220205 Acrylic Cover for Round Flow Cell
 - 8060626 O-Ring for Round Flow Cell
 - 1220207 PVC Mounting Plate for Round Flow Cell
 - 8060629 Screws – Mounting Plate
- **Rectangular Flow Cell**
 - 1220201 2-Sensor Rectangular Flow Cell Body
 - 1220200 Acrylic Cover for 2-Sensor Rectangular Flow Cell
 - 8060669 O-Ring for 2-Sensor Rectangular Flow Cell

Common Flow Cell Components
- 9050138 Screws – Acrylic Cover
- 8060623 Elbow, 90° PVC
- 8060624 Elbow, 45° PVC
- 9060538 Plug, ¾× PVC
- 9060541 Nipple, ¾× Close
- 9060621 Sample Valve, ½× Ball Cock
- 9060548 Ball Valve ½× PVC
- 9060549 SS Bushing, PVC ¾ x ½
- 9060544 Pressure Gauge
- 8060673 Pressure Regulator
LIMITED WARRANTY

BECS warrants the controller electronics and flow cell against any defect in workmanship or materials for a period of five years from the date of shipment. BECS warrants the pH and ORP sensors against any defect in workmanship or materials for a period of two years from the date of shipment. In the event of a component failure due to any defect in workmanship or materials, BECS will repair, or if repair is not possible, replace the defective part or parts of the BECSys controller.

BECS will have the sole right to determine whether to repair or replace a product. BECS will not be responsible for any expense associated with installation of repaired or replacement parts.

LIMITATIONS AND EXCLUSIONS

This is a LIMITED WARRANTY. BECS makes NO WARRANTIES other than those contained herein. The LIMITED WARRANTY replaces and is in lieu of any WARRANTIES of MERCHANTABILITY or of FITNESS FOR A PARTICULAR PURPOSE which are expressly DISCLAIMED. All GENERAL, SPECIAL, INDIRECT, INCIDENTAL AND/OR CONSEQUENTIAL DAMAGES ARE EXCLUDED AND DISCLAIMED.

This Limited Warranty is governed by Missouri Law and all disputes related to or arising from this transaction or Limited Warranty shall be resolved in Circuit Court of St. Louis County, Missouri.

Any claims under this Limited Warranty must be brought within ONE YEAR after the cause of action accrued.
BECS has been designing and manufacturing the industry’s most reliable water chemistry controller for over 20 years. Our 24,000 ft² facility in Saint Louis, Missouri is home to an exceptional design team, and all manufacturing is performed onsite at this facility where we can personally assure the quality of our products. The BECS commitment to excellence drives the most innovative new products and unparalleled customer service.